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1 Summary  
This report gives a detailed summary of research work completed under Air Force 
Research Laboratory (AFRL) Award No. FA8750-11-1-0061, “Understanding Tonal 
Languages,” over the time period (Nov 17, 2010 – Nov 16, 2012). 

 

2 Project Introduction 
Automatic speech recognition systems for tonal languages have been studied for many 
years. Most research targets Mandarin Chinese for investigation; due to its very large size 
and world-wide importance (845 million native and 1025 million total speakers [1].) 
There are two major barriers to progress. One is the lack of a large database that provides 
transcriptions finer than the syllable level. Another problem is that there are large  
differences among regional dialects of Chinese so that an enormous database with a very 
a large number of speakers would be required to develop a general Mandarin ASR 
system, without degradation due to accent issues. To date, nearly all high accuracy 
systems have been developed using either isolated words (monosyllables) with read 
speech from broadcast news announcers or synchronized computer voices. 

In this work, we have been extensively investigating signal processing and recognition 
strategies for Mandarin syllable and tone recognition. Unlike English, Mandarin is 
composed of approximately 416 distinct base syllables, which, in total, represent 
approximately 1345 tonal syllables (Wang et al., 1995) [2], using five types of pitch 
contours (tones) for further differentiation of the base syllables. Mandarin Automatic 
Speech Recognition (ASR) has not yet been as intensively investigated as English 
language ASR. However, since at least 1995, considerable effort has been devoted to 
base syllable recognition and tone recognition. Robust ASR for Mandarin is potentially 
of even more significance than English ASR, because of the great difficulty of inputting 
Mandarin characters to a computer via keyboard, the very large number of people who 
speak Mandarin as their first language and the great interest in automatic real time spoken 
language translators between Mandarin and other languages such as English. 

The vast majority of reported work for Mandarin base syllable recognition utilizes Mel 
cepstral coefficients as the primary acoustic features for a Hidden Markov Model (HMM) 
and/or neural network recognizer. Much of the work on tone recognition has focused on 
developing better pitch trackers, due to the importance of robust pitch tracking for tone 
recognition, and the perceived deficiencies in existing trackers. In the work described 
here, the recently introduced type of spectral/temporal DCTC/DCS features was used for 
the baseline acoustic features (Zahorian et al., 1997) [3].  Although similar generally to 
Mel cepstra and delta cepstra, the DCTC/DCS features have considerably more flexibility 
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for trading off between spectral and temporal resolution. We have also shown these 
features to be superior to the more standard Mel cepstra features in controlled comparison 
tests for phonetic recognition in English. For the case of Mandarin monosyllables, the 
DCTC/DCS features can be further optimized to take into account such characteristics as 
the syllable “FINAL” having more influence on the syllable “INITIAL” than vice versa.  
For the pitch tracking needed as the first step for tone recognition, the YAAPT tracker 
was used (Zahorian and Hu, 2008) [4]. This tracker has been shown to be very accurate, 
performs very well in the presence of noise, and can also easily be adjusted to either 
provide a continuous pitch track, smoothly spanning unvoiced speech, or reliably make 
voiced/unvoiced decisions. Both modes of operation were evaluated in the research for 
syllable and tone recognition.  However, generally the continuous pitch track mode 
(speech is assumed to be all voiced) is preferable. 

Beginning with the front end DCTC/DCS acoustic features, and pitch contours, a 
combination neural network/HMM recognizer was used to evaluate a variety of methods 
for computing and combining these features. For example, a multiple pass procedure can 
be used whereby the approximate locations of each syllable and the parts of each syllable 
are estimated on the first pass, and then feature calculations are redone on a second pass, 
synchronized to the estimated “INITIAL” and “FINAL”  locations and adjusted to take 
into account anticipated co-articulation effects. Experiments reported here were 
conducted with the RASC863 project Mandarin database, for which “ground truth” 
syllable and tone labels are available. There are also published results for base syllable, 
tonal syllable, and tone error rates, which can be compared for judging the effectiveness, 
and areas needing improvement, in the work done over the funding period. 

Although tone recognition has been investigated for many years, relatively high 
recognition accuracy has only been obtained for isolated words and read speech (Huang 
and Seide, 2000)[5]. Various pattern recognition methods were applied to tone 
recognition, including HMMs, Gaussian Mixture Models (GMMs), and Decision-tree 
Classification. Approaches in the tonal language recognition fall into two major 
categories: embedded tone modeling and explicit tone modeling (Liu et al., 2007) [6]. In 
embedded tone modeling, pitch related features are added as extra dimensions in the short 
time speech feature vector. Tone recognition has been done as an integral part of the 
existing system (Chang et al., 2000) [7]. For example, Zhou et al. (2004) [8] combined 
MFCC and pitch based features into one feature vector for tone modeling. In addition, the 
pitch duration and long span pitch information were integrated into the feature vector. In 
contrast, in explicit tone modeling, tones are independently modeled and recognized in 
parallel to the recognition of base syllables. In the work of Wang et al. (1995) [2], a set of 
sub-syllabic models for base syllable recognition and another set of context-dependent 
models for tone recognition were employed, and then the results were synchronized by a 
concatenated syllable matching algorithm. 
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Furthermore, Wang and Seneff (2000) [9] have investigated the interaction between 
intonation and tones in Mandarin and found the tone classification errors were reduced 
when the effects of tone coarticulation and intonation were normalized. Meanwhile, 
spontaneous speech recognition is also a big challenge in Mandarin recognition because 
spontaneous speech usually contains mispronunciations, emotional status, and a fast 
speaking rate (Liu et al., 2007) [6].  

3 Methods, Assumptions and Procedures 

3.1 Overview of MANDARIN CHINESE 

3.1.1 Language Elements and Structure 

3.1.1.1 LANGUAGE STRUCTURE 

The basic unit of Mandarin Chinese is a character. Typically, a meaningful Chinese 
sentence is built from words - even though the sentence can also seen as a string of 
characters.  Each character is pronounced as a syllable. Each character, however, can 
correspond to more than one syllable (more than one way to be pronounced). The relation 
among syllables, phones, and tones is described in later sections. 

 

 
Figure 1: Language structure of Mandarin Chinese 

 

3.1.1.2 SYLLABLES AND PINYIN 

As a tonal language, Mandarin uses a mono-syllable associated with a lexical tone as the 
basic unit. If the tone is neglected, the unit is referred to as a base syllable. 
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Conventionally, each Mandarin base syllable can be decomposed into an 
“INITIAL/FINAL” format very similar to the consonant/vowel relations in English. 
“INITIAL” is the initial consonant part of a syllable and “FINAL” is the vowel part but 
including optional medial or nasal ending. There are a total of 22 “INITIALs” and 41 
“FINALs” in Mandarin (Wang et al., 1995) [2].   

3.1.1.3 LEXICAL TONES 

For each syllable, there is a lexical tone indicated by syllable-level pitch or fundamental 
frequency (F0) contour patterns. Because pitch is only defined for the voiced regions, it is 
generally assumed that the tone is associated only with “FINALs.” There are five tones in 
Mandarin: high-level (tone 1), high-rising (tone 2), low-dipping (tone 3), high-falling 
(tone 4) and neutral tone (tone 5).  In actual speech, the neutral tone is rare, and is 
sometimes judged as “no tone.”  Figure 2 shows the wave, energy and pitch of basic 
syllable “ma” with 4 different tones. 

 

Figure 2: Illustration of Mandarin tones 
3.1.1.4 CONCLUSION 

The total number of phonologically allowed different syllables in Mandarin is 1345. 
However, when the tone information is disregarded, there are only 416 base syllables 
(Wang et al., 1995) [2]. Therefore, accurate tone recognition plays an important role in 
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automatic Mandarin speech recognition and a large amount of research has been devoted 
to the pursuit of an accurate pitch tracking algorithm (Lin and Lee, 2003 [10]; Huang and 
Seide, 2000 [5], Zahorian and Hu, 2008 [4]). Table 1 lists typical Syllable INITIALs and 
FINALs and all legal combinations of Syllable FINALS and tones. 

Table 1: Syllable INITIALs and FINALs and all legal combinations 

 

3.1.2 Language Modeling 
As tones are a very important characteristic for a tonal language and a primary difference 
with non-tonal languages such as English, there are two major approaches for building an 
ASR system for Mandarin Chinese speech:  recognition with implicit tone modeling 
(ITM), or recognition with explicit tone modeling (ETM) [6].  

For embedded tone modeling, pitch related features are added as extra dimensions to the 
short time spectral speech feature vector. Recognition is done as an integral part of the 
existing system [11]. For example, Zhou and et al. [12] combined MFCCs (Mel-
Frequency Cepstral Coefficients) and pitch based features into one feature vector for 
embedded tone modeling.  

On the other hand, in explicit tone modeling, tones are independently modeled and 
recognized using prosody features [13] in parallel with the recognition of base syllables, 
which ignore tone numbers.  
 
For ASR at the phonetic level, the required number of HMMs for English, Mandarin 
modeling using ETM, and Mandarin modeling using ITM are listed in table 2. For the 
case of Mandarin, the number of HMMs for various possible “versions” of both ETM and 
ITM are listed. Note, that in contrast to English, where only 48 HMMs are needed (and in 
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practice, usually only 39), a very large number of HMMs are needed for Mandarin (up to 
1345 for one approach). This implies, at least potentially, much more speech data is 
needed for HMM modeling of Mandarin then for English. (However, it should also be 
noted that some of the most accurate English ASR systems use triphones as fundamental 
HMM building blocks, and there are typically on the order of 1000 triphone HMM 
models.) 
 

Table 2: Language modeling for English and Chinese 

ENGLISH MANDARIN CHINESE 

 Explicit tone modeling (ETM) Implicit tone modeling (ITM) 

48 HMMs 421 HMMs  68 HMMs  1345 HMMs 187HMMs  

48 HMMs for 48 
phones  

416 HMMs for 416 
distinct syllables.  
Plus 5 for 
recognizing tones  

For 22 INITIALs 
and 41 FINALs  
plus 5 for 
recognizing tones  
+ simple grammar  

One HMM per 
syllable for all 1345 
tonal syllables  

22 HMMs for 22 
INITIALS,  and 165 
HMMs for all legal 
tonal FINALs +  
simple grammar  

 
 

3.2 DATABASE: RASC863 Shanghai Region 

3.2.1 Introduction  
The main database that was used for experimental results reported here is RASC863, 
which is a multi-speaker Mandarin speech database developed by the Chinese Linguistic 
Data Consortium (CLDC) [14]. Summarizing briefly, the entire RASC863 annotated  
database is a speech corpus with 4 regional accents, and is a collection of read and 
spontaneous speech from 800 speakers equally spread among 4 major regions (Shanghai, 
Chongqing, Fujian, and Guangzhou) in China (200 speakers for each region.) The 
transcriptions of the speech for 20 speakers from each region are annotated at the 
phonetic level. Totally the database contains about 34 hours of speech, or 8.5 hours per 
region. 

For the work summarized in this report, the speech from the Shanghai region was chosen 
based on the consideration that the accent for speech from this region is most “neutral” 
out of the 4 regions. The data from each speaker includes one 3 to 5 minute long 
spontaneous speech passage, 15 spontaneous short sentences, 20 short read sentences and 
roughly 110 phonetically balanced sentences (the “S-group”).  The cumulative training 
time of the phonetically balanced part is similar to that of the TIMIT database [15]. A 
comparison between RASC and TIMIT is listed in Table 3.  The RASC863 database also 
provides 4 different types and three different resolution levels of labels for each sentence. 
Each sentence is transcribed as the entire sentence using Chinese characters; again at the 
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sentence level but using PINYIN; with syllable boundaries marked for each syllable 
(PINYIN); and with phoneme boundaries marked (PINYIN).   

Due to the fact that the database chosen for this research only contains speech from 20 
speakers (phonetically transcribed) from Shanghai and, from casual listening, there 
appears to be considerable accent variations among the speakers (despite the earlier 
comment about “relatively” accent free), there are not enough speakers to perform a 
meaningful completely speaker independent evaluation with separate training and test 
speakers. For example, for RASC863 14 speakers could be used for training, with the 
remaining 6 speakers for test, whereas for the TIMIT database, 3696 sentences (~191 
minutes) from 462 speakers can be used for training, and 1344 sentences (~70 minutes) 
from 168 speakers for test.  Thus, despite the overall large duration of speech used in the 
RASC863 data, the small number of speakers are likely not large enough to generalize 
well to other speakers.  Therefore, for experiments reported in this paper, 70% of the 
phonetically balanced sentences (1548 sentences, ~224 minutes) from every speaker were 
used as training data, and the remaining 30% (661 sentences, ~96 minutes ) were used for 
testing data.   

Table 3: Comparison of RASC863 (Mandarin) with TIMIT (English) 

 TIMIT RASC863 

Speakers 630 20 

Speech type Read Answers to questions, read 

Time duration 400 minutes 510 minutes 
178 sentences per speaker 

Label types *.TXT - sentence level 
*.WRD  - word level 
*.PHN  - phoneme level 

*.TextGrid  file includes sentences level in 
both char/syllable; include syllable level; 
include phoneme level 

Accent Divided into 8 dialect regions All speakers from Shanghai 

Non-speech notations No Yes (e.g.  [BR] – breathing ) is labeled, too. 

Sampling Rate 16 kHz 16kHz 

 

3.2.2 Database Corrections and Modifications 

3.2.2.1 CORRECTIONS FOR GENERAL ISSUES 

In all our previous acoustic-phonetic ASR work using the HTK, the TIMIT database was 
used. Therefore, in order to avoid HTK malfunctions when using the same conventions 
for setup files, the labeling files for RASC863 had to be formatted the same as were the 
TIMIT labeling files. Several changes in the labeling files for RASC863 were required. 
For example for the RASC863 database, the start and end time for each syllable had to be 
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converted to sample indices; the original tones labels (e. g. numerical digits 0, 1, 2, 3, 4 
for the 5 lexicon tones) had to be either removed (for experiments involving base 
syllables) or converted to an alphabetic notation. Also, the phonetic transcription part of 
RASC863 includes human introduced noise or mispronunciations. Some notations used 
for transcribing these special events are listed in Table 4. 

Table 4: Special notations used in RASC863 
Sound change Mispronunciation Human noise 

Type Symbol  Type Symbol Type Symbol  
Nasalized ~ Dialectic # Sniffle [SN] 

Centralized _” Pronunciation * Deglutition [DE] 
Voiced 

Consonant 
_v   Inspiration [IP] 

Breathy _h   Yawn [YA] 
 

It would have been difficult, and somewhat of a distraction to the main goals of this 
work, to explicitly model these noises and other “problems.” So their corresponding 
transcriptions were modified with rules as defined in the following table: 

Table 5: Modification for special notations 
Special Sound Symbol Modification 

Nasalized ~ Ignored if with a phone/”Sil” if appears alone 
Centralized _” Ignored if with a phone/”Sil” if appears alone 

Voiced Consonant _v Ignored if with a phone/”Sil” if appears alone 
Breathy _h Ignored if with a phone/”Sil” if appears alone 
Dialectic # Ignored if with a phone/”Sil” if appears alone 

Pronunciation * Ignored if with a phone/”Sil” if appears alone 
Sniffle [SN] Change to “Sil” 

Deglutition [DE] Change to “Sil” 
Inspiration [IP] Change to “Sil” 

Yawn [YA] Change to “Sil” 

3.2.2.2 MODIFICATION FOR PHONETIC TRANSCRIPTION 

Due to the fact this research used only the Shanghai region data of the entire RASC863 
database, there are special phones that are only used in the “Wu” language (e.g. accented 
Mandarin type in Shanghai region) that can be found in the transcriptions.  However, as 
judged by human listeners, the accented phones sound very similar to their equivalent 
phones in “standard” Mandarin.  They also only appear several times in the entire 
database.  Thus the transcriptions of these special phones were converted to their 
phonetic equivalence in “standard” Mandarin Chinese. 

Table 6: Modification for special phones of “Wu” 
Phone Only Used By “Wu” Equivalent Phones in Mandarin 

Oong Ong 
Voong Vn 

Eu Ou 
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Also there were typo errors found in the phonetic transcription from this database.  They 
had to be corrected before running with HTK. Otherwise, the HTK failed to generate 
models for several cases due to insufficient data. That is the HTK attempted to generate a 
model for each type of typo—meaningless models even if they could have been 
generated.  Typical error types and how they were corrected are summarized in Table 7 
below: 

Table 7: Error patterns in RASC863 
Error Type Example  Correction 

Typo ven, veng Correct with right 
phone label “uen” 

Combined zhi mis-combined the 
labels “zh” and “i" from 

two lines into “zhi” 
Empty Transcription No label Usually appears with 

“Combined” error type 
Forget Tone Number “0” e Put a “0” at the end 

 

Note that to meaningfully use the remainder of the RASC863 database, similar kinds of 
errors should be removed.  Unfortunately, this error removal process is tedious and time 
consuming, as it is very difficult to completely automate this “clean-up” process. 

Data used for research on basic phone recognition, and for phone recognition and tone 
recognition, were all derived from the refined version of the original RASC863 from 
section 4.2., except with a different transcription format. This process is illustrated in 
Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: Data modification for RASC863 (1) 

Refined RASC863 

0 500 t    
500 2000 angH 
2000 2500 b 
2500 4000 iF 
…… 

Data for Basic Phone 

0 500 t    
500 2000 ang 
2000 2500 b 
2500 4000 i 
…… 

Data for Monotone 

0 500 INIT    
500 2000 H 
2000 2500 INIT 
2500 4000 F 
…… 
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3.2.2.3 MODIFICATIONS FOR SYLLABLE TRANSCRIPTIONS 

The transcription at syllable label is more precise since only very few typos were found. 
Thus, the original data could be used for recognition at the syllable level after 
suppressing tone numbers. After data modification and preparation, the data can be used 
for explicit tone recognition of tone pairs (Bitones). 

The idea of the modification is to label the time when a speaker starts transitioning from 
one tone to the next one without “breaking” each transcription Two methods have been 
attempted for this purpose. In method 1, two consecutive tones are grouped together (H in 
tangH and F in biF) to create the longer Bitone (HF).  However, monotone segments 
followed by silence are retained as monotones in in the modified labeling scheme. For 
method 2, each Bitone begins at the half way point of the “first” tone (even if silence) and 
ends at the halfway point of the “second” tone (even if silence). Thus there are no 
monotone segment labels for method 2. This process is also illustrated in the figure 
below.   

Automatic recognition of these Bitones is described later in this report (section 6.3).  

 

 

 

 

 

 

 

 

 

Figure 4: Data modification for RASC863 (2) 
 

3.3 ASR for Continuous Mandarin at Phonetic Level 

3.3.1 Introduction 
The experimental setup for performing base phone (that is, ignoring the tone number) 
recognition is very similar to that for phonetically recognizing 48 phones in English. 

Syllable Transcription  

0 500 sil    
500 2000 tangH 
2000 2500 biF 
2500 4000 iuanD 
…… 

Data for Bitone  2. 

0 250 sil    
250 1250 SH 
1250 2250 HF 
2250 3250 FD 
…… 

Data for Basic Syllable  

0 500 sil    
500 2000 tang 
2000 2500 bi 
2500 4000 iuan 
…… 

Data for Bitone 1. 

0 500 sil    
500 2500 HF 
2500 4000 D(next) 
…… 
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Table 8 lists all Mandarin phones used for these experiments. A major way to separate 
Chinese phones is to categorize them into “Syllable Initials” and “Syllable Finals.” 
Notice that elements listed for “Syllable Initials” are mostly consonants while the 
“Syllable Finals” mostly include vowels and vowels ending in a nasal sound. Spoken 
Mandarin Chinese is a tonal language and most of its syllables are meaningful only if 
tones are also known. Thus, the RASC863 transcription also includes tone numbers after 
nearly every vowel. Therefore, the very beginning step for performing base phone 
recognition with RASC863 was to remove these tone numbers in the annotation files. 
With tones ignored, there are 58 basic Mandarin Chinese phones, each of which was 
modeled by a 3-state HMM. Additionally, one HMM was created for silence and one was 
created for all sounds labeled as “human noise and mispronunciation.” Thus, a total of 60 
HMMs were used for these experiments, versus 39 HMMs typically used for English. 

Table 8: Required HMMs for basic phone recognition 
Syllable Initials Syllable Finals Silence 

z, zh, j, m, q, p, sh, d, x, l, g, b, 
ch, h, k, t, n, f, c, r, s 

sil, ong, ian, u, ie, an, uan, iou, 
ing, ang, i, iii, ai, van, iang, ou, 
iao, ao, eng, ua, uo, uei, a, en, e, 
ei, v, iong, uen, ia, uai, ii, ve, 
uang, o, in, er, vn, eer, ueng 

Sil 

 

3.3.2 Spectral/Temporal Features  
Although most ASR research uses mel frequency cepstral coefficients and delta terms as 
acoustic features, we have found that a somewhat different (although not too different) 
feature set called DCTCs and DCSCs have performance advantages over the MFCC 
features [34].  Essentially the DCTCs are computed similarly to MFCC terms, except no 
filter bank step is used; the mel frequency scale is realized with modifications to the 
cosine basis vectors used.  The DCSC terms are conceptually similar to MFCC delta and 
delta terms, except much longer time intervals and more terms are used as compared with 
the MFCC delta and delta-delta terms.  Although the total number of DCTC/DCSC terms 
can easily be varied, and often is depending the details of the ASR task. For this task, we 
use 13 DCTC terms, each encoded with 5-6 DCS terms (65-78 total features, and sliding 
blocks of length approximately 200 ms. In contrast the standard for MFCCs is a feature 
vector of length 39 (12 MFCCs plus energy, 13 delta terms, and 13 delta-delta terms), 
using effective blocks lengths of about 45 ms.  

Our research on DCTC/DCSC features over the past few past few years has also shown 
that the temporal aspect of the acoustic features are quite important relative to spectral 
resolution [16].  Best results in both noisy and clean conditions are typically obtained 
with initial spectral analysis window lengths of about 8-10 ms,  a frame spacing of about 
2 ms,  and a block length of about 200 ms for computing DCSC terms (or on the order of 
100 frames).  
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Figure 5: DCTC/DCSC feature extraction 
A major objective of the present work was to explore time/frequency resolution for 
Mandarin, using the DCTC/DCSC features which easily allow tradeoffs in time and 
frequency resolution. Note that Chinese speakers usually speak 160-180 characters per 
minute which equates to 160-180 syllables per minute since all Mandarin Chinese 
characters are monosyllabic. This result in a much lower syllable rate compared to the 
average American adult who reads prose text at 250 to 300 words per minute - with an 
even larger number of actual syllables.  The working hypothesis was that these 
time/frequency effects are quite different for Mandarin versus English.  

3.3.3 Base Syllable Recognizer 
Like much other research in language processing, HMM acoustic models were used for 
the ASR system. HTK (Version 3.4) was the actual software system used. This toolkit 
allows complete flexibility in terms of the number of mixtures, number of states, types of 
transitions, and provides for language modeling.  

3.3.4 Experimental Evaluation 
The objective of these experiments was to determine the accuracy possible using 
DCTC/DCSC features for recognizing Mandarin phones without considering tones (i.e, 
tone number).  Again, the standard defined in Table 8 will be used through all 
experiments in this section. The accuracy achieved  using control MFCC-39 features (that 
is, 12 MFCCs plus energy with delta and acceleration terms, or 39 total terms were 
obtained every 10 ms at a frame length of 25 ms, with pre-emphasis coefficient of 0.97) 
was 68.8%, which is roughly 1.5% higher than obtained with 39 DCTC/DCSC features. 
When increased to 48 features, MFCC (68.8%) and DCTC/DCSC gave very similar 
results. The best accuracy (70.4%) was obtained using 65 DCTC/DCSC features 
computed using a block length of 340ms for computing DCSC trajectory features.  

   

Speech Wave 

   

DCTC/DCS 
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Figure 6: Basic phone recognition using DCTC/DCSC features and HMM phone 
models. 

 

Another experiment compared the accuracy of English phone recognition (TIMIT) and 
Mandarin Chinese basic phone recognition (RASC863), using DCTC/DCSC features, as 
a function of trajectory length. Notice Mandarin speech has 60 phone models that need to 
be trained with a similar amount data as that used to train 39 English phone models, so 
using the same feature configuration (48 DCTC/DCSC), a somewhat lower accuracy 
might be expected for Mandarin than for English (Figure 7).  

This experiment also shows that the “best” DCSC block for Mandarin Chinese is longer 
than the “best block length for English. It is clear to see that the maximum recognition 
accuracy (72.5%)  for English is obtained at 300 ms. This block length is about 60 ms 
shorter than where the peak value of 68.9% for Mandarin Chinese recognition is obtained 
(360 ms).  This phenomenon supports the hypothesis that the length of time for 
computing spectral trajectory features for Mandarin should be longer than the length of 
time for computing spectral trajectory features for English.  
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Figure 7: Phone recognition using TIMIT vs. basic phone recognition using 
RASC863 

3.3.5 Conclusions 
In the method presented in this section, acoustic features - DCTC/DCSC - are obtained 
by extracting the temporal trajectories of integrated frequency domain features and tested 
with the RASC863 database through ASR experiments. The results not only demonstrate 
that DCTC/DCSC features are effective for base phone recognition but also suggest that 
the temporal trajectory length for processing Mandarin should be longer than for English. 

 

3.4 Lexical Tone Recognition in Continuous MANDARIN 

3.4.1 Introduction 
Most literature on machine recognition of tones is based on syllables spoken in isolation 
[17] or high quality speech such as TV broadcast news [18]. This is likely due to the fact 
that recognizing tones from syllables extracted from conversational speech is difficult 
even for humans: some linguistic research suggests that human listeners require long 
duration acoustic cues in order to recognize tones correctly [19].  The perception of tones 
also varies depending on the listener’s native experience with the tonal system of his/her 
own language [20].  

The following section of this research report explores the recognition ability of humans 
for lexical tones in lightly-accented continuous Mandarin Chinese for different 
conditions. Then two automatic methods for monotone recognition are  discussed and 
compared with both human’s accuracy and other tone modeling techniques [21][22].  

The Shanghai region data from RASC863 (Regional Accented Speech Corpus) [14] was 
utilized for all experiments reported in this paper, since it provides  phonetically labeled 
transcriptions and the accent from  speakers in this region is considered the “lightest” of 
all 4 regions included in the RASC863 database.  
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3.4.2 Tone Recognition by Humans 

3.4.2.1 INTRODUCTION 

The main object for this experiment was to investigate the capability of native listeners to 
recognize tones, for each of four cases, with varying amounts of context (i.e., length). For 
each case, listeners were given approximately 800 speech segments to listen to and were 
asked to identify tones, based on a single playback of each speech sample.  The segments 
(approximately 3200 in total) were directly extracted from the continuous speech data 
portion of the RASC863 database. The type of speech segment for each case is listed in 
Table 9. 

3.4.2.2 EXPERIMENTAL PROTOCOL AND TEST SOFTWARE 

3 male and 3 female college students whose native language is Mandarin Chinese were 
selected as the experimental subjects. All participants were trained and tested by the grad 
student supervising this phase of the work (James Wu) and shown a correct 
understanding of lexical tones in Mandarin (High, Rising, Dipping and Falling) and their 
corresponding pitch characteristics. 

The syllable segments for Cases 3 and 4 are consecutive syllables extracted from random 
positions in a sentence.  In some cases the syllable strings were “words,” but not in all 
cases, as discussed later. 

Table 9: Cases for human listening test 

 

Listeners used a PC for playing sound tokens and recording their answers with interaction 
with the computer via a Graphic User Interface (GUI) as shown in Figure 8. Listeners 
simply marked tone type (High, Rising, Dipping and Falling) according to what they just 
heard.  Listeners were comfortably seated and used high quality headphones. 

Case 1 Case 2 Case 3 Case 4 

One syllable final: (vowel 
part only) 

One complete syllable 
(consonant and vowel) 

A string that contains two 
syllables 

A string that contains three  
syllables 
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Figure 8: GUI for listening experiment  
Listeners were only allowed to listen once only to each token, but could decide when to 
begin the playback of each token.  Typically listeners required about 90 minutes for each 
of the four cases.   

3.4.2.3 ANALYSIS OF RESULTS 

The overall tone recognition results from 6 listeners are in table 10 (labeled by ‘Male1’ to 
‘Female3’) with respect to 4 cases (labeled by ‘Vowel’ to ‘3 slbs’), and their average and 
standard deviation are shown in the following table. 

Table 10: Tone recognition accuracy (%) for human listeners 
 

 

 

 

 

 

 

Figure 9: Tone recognition accuracy (%) for human listeners 

45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

Vowel  1SLB  2SLB  3SLB

M1

M2

M3

F1

F2

F3

 

M1 M2 M3 F1 F2 F3 Avg.  S. Dev  

Vowel 59.4 51.1 70.0 67.3 59.9 63.6 61.9  6.7 

1 slb 58.7 53.8 64.7 53.6 57.4 59.8 58.0  4.2 

2 slbs 75.7 74.4 81.3 80.8 80.3 76.8 78.2  3.0 

3 slbs 80.7 67.8 86.1 83.1 80.8 78.8 79.5  6.2 

Average 68.6 61.8 75.5 71.2 69.6 69.8 69.4  4.5 

%
/ 



Approved for Public Release; Distribution Unlimited.  
17 

 

The average recognition rate for case 3 and case 4 (e.g. string with multiple syllables) is 
noticeable higher (78.2% and 79.5%) than for the single syllable cases 1 and 2 (61.9% 
and 58.0%)  

For most languages, the tonal effect only occurs in voiced speech. Thus most research on 
automatic Mandarin recognition, either implicitly or explicitly, modeled tones based on 
acoustic features that are extracted from vowels only. 

The confusion matrix (Table 11) is generated from the recognition result for case 
“Vowel.”  All values in the table are per cents. The High tone appears most likely to be 
recognized correctly while Dipping and Rising tones appears to be more difficult to 
recognize correctly. This is consistent with [19], that finds that recognizing High tone and 
Falling tone requires shorter cues than for the other two tones (Dipping and Rising). 

Table 11: Tone confusion matrix for human listeners based on listening to vowels 
only 

   

 

 

 

 

 

The next result is for case “2 slbs” only.  Since each segment was randomly selected from 
a sentence, syllable pairs could form a lexical word, or might not form a word. (Most 
Chinese words are comprised of 2 characters (syllables)). As expected, when recognizing 
a string from 2 syllables that form a word, the linguistic information available to listeners 
helps them recognize tones much more accurately than for the case when they are 
recognizing tones from two syllables with no linguistic meaning. 

 

 

 

High Rising Dipping Falling 

High 70.4 10.9 5.4 13.3 

Rising 21.7 59.6 8.6 10.2 

Dipping 16.9 25.9 44.2 13.0 

Falling 18.4 7.2 11.5 63.0 
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Figure 10: Recognition rate of tones for words versus not-words in two syllable 
cases. 

The next result explores the possibility that there might be gender dependent effects for 
tone recognition. Results were rescored, sorting both listeners and speakers by gender. 
These results are shown in table 12.  The basic conclusion is that there are no significant 
gender dependent effects for tone recognition.  However the female listeners did score a 
little higher on tone recognition than did the male speakers (~5%). Tones from female 
speakers recognized slightly more accurately than tones from male speaker by both male 
and female listeners (1.9%).  These observations may not be statistically meaningful, 
given the small pool of speakers (20) and listeners (3 female and 3 male).  

 
Table 12: Tone recognition rate by gender of speakers and listeners 

 

 

 

 

 

The results depicted in Table 13, for case “3 syllables,”  indicates  that recognizing the 
tone of the middle syllable appears to be easier than the tone of the beginning or ending 
syllable for  human listeners. This may be because the co-articulation cues for both the 
beginning and end part of the middle syllable are present (from first and third syllables) 
whereas the first syllable has only ending co-articulation cues (from the following middle 
syllable)  and the  last syllable has only beginning co-articulation cues (from the 
preceding middle syllable). 
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Table 13: Tone recognition rate as a function of syllable position in 3-syllable strings 
 

 

 

 

3.4.3 Tone Classification Using Neural Networks 

3.4.3.1 PITCH FEATURE 

The pitch contour is widely accepted as one of most effective features for tone tracking 
[17][20][21][22][14]. The research reported in this paper made use of the fundamental 
frequency tracking algorithm called YAAPT [4] for pitch. Pitch contours were 
represented with Discrete Cosine Series Coefficients terms (4-5) in the same manner as 
DCTC trajectories are encoded [16].  The black dots placed on the spectrograms shown 
in Figure 11 are pitch tracks computed by YAAPT. 

The four panels in Figure 11 illustrate the capability of this method for pitch tracking. 
The black dots laying on the spectrograms for each tonal syllable is the pitch track.  

 

 

 

Figure 11: Low frequency part of spectrogram with pitch overlaid for 4 tones 

 

M1 M2 M3 F1 F2 F3 

1st slb 76.3 72.9 80.4 79.5 76.2 73.5 

2nd slb 78.4 80.4 90.9 88.3 86.2 83.5 

3rd slb 87.3 69.9 86.8 81.3 79.8 79.5 

‘u’ - Dipping ‘ai’ - Falling 

‘iang’ - High ‘ang’ - Rising 
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3.4.3.2 CLASSIFICATION EXPERIMENTS 

For these experiments, segments were extracted from the data base using the supplied 
labels for vowels. Segment durations were varied from 100 ms to 1000 ms in steps of 100 
ms. For each segment length, DCTC and/or pitch was computed and then represented 
with DCSC terms. Based on results of pilot experiments, the DCTCs were only computed 
from the low frequency spectra (75Hz to 800 Hz). Three conditions were tested: 

DCTCs + Pitch: 5 DCTCs encoded with 7 DCSC terms each, pitch encoded with 7 
DCSC terms (42 total features) 

Pitch only: pitch feature encoded with 7 DCSC terms (7 features in total) 

DCTCs only: 6 DCTCs encoded with 7 DCSC terms each, resulting in a total of 42 
features. 

Each of the above conditions were also repeated for 5 time “warping” factors (0, 5, 10, 
15, 20). These time warping factors control the effective length of the time window, in 
conjunction with the total segment length. Basically, these curves represent the time 
window used for each sliding block of frame-based features used to compute DCSCs.  
These warping factors are illustrated in Figure 12, in terms of their effect on the first 
basis vector in the DCSC calculations. For warping of 0, the first DCSC basis vector is a 
constant. As the warping increases, the first DCSC basis vector becomes progressively 
more peaked and narrow, thus reducing the effective time duration of the basis vectors 
computed with that degree of warping. 

 

Figure 12: Time warping curves for tone classification experiments 
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These features were classified with a neural network classifier having two hidden layers 
(50 hidden nodes, 25 hidden nodes) and an output layer of 4 nodes. Test results, for each 
of the three features sets, as a function of segment length are shown in the following 
figures 

  

Figure 13: Tone classification accuracy for three features sets as a function of total 
segment length, using time warp = 0. 

 

Figure 14: Tone classification accuracy for three features sets as a function of total 
segment length, using time warp = 5 
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Figure 15: Tone classification accuracy for three features sets as a function of total 
segment length, using time warp = 10. 

 

Figure 16: Tone classification accuracy for three features sets as a function of total 
segment length, using time warp = 15. 
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Figure 17: Tone classification accuracy for three features sets as a function of total 
segment length, using time warp = 20. 

 

Figure 18: Tone classification accuracy for three features sets as a function of total 
segment length, using the best warping value for each case. 

 

3.4.3.3 ANALYSIS OF RESULTS 

The results of the automatic tone classification using a neural network classifier can be 
summarized as follows; 
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1.  The overall highest tone classification accuracy is approximately 76% using a 
combination of spectral/temporal features (DCTCs/DCSCs) and a pitch contour.  
These best results were obtained using a low frequency range (75 Hz-800Hz) and 
longtime interval (800ms).   

2. The highest tone classification accuracy using only a pitch contour is 
approximately 70%, using 7 DCSC terms to represent pitch over an interval of at 
least 800 ms. 

3. The highest tone classification accuracy using spectral/temporal features only is 
approximately 65%, with spectral/temporal features computed from 75-800 Hz 
frequency range and 800 ms or longer frequency range. 

3.4.3.4 DISCUSSION AND CONCLUSIONS 

These automatic results compare favorably to the results obtained by native Mandarin 
human listeners. For most cases tested with listeners, (especially the vowel only and 
single syllable cases), the human accuracy was lower than the 76% accuracy reported for 
the automatic method.  It is interesting that fairly high tone classification accuracy can be 
obtained without using pitch—approximately 65% using spectral/temporal features only.  
Although the pitch contour appears to be the best single feature for tone classification, it 
is better yet to augment pitch with spectral/temporal features. The best results were 
obtained with nearly a 1 second segment interval; however, due to the time warping 
factor used (see Figure 12), the effective best interval was closer to 400 ms.  

We hypothesize that higher accuracy could be obtained by increasing the size of the 
training database (training results, not reported, were considerably higher than the 
reported test results), and/or normalizing the pitch contours by average values from each 
speaker. 

3.4.4 Tone Recognition Using HMMs 

3.4.4.1 INTRODUCTION 

Research reported in section 6.4 is also for tone recognition, using completely automatic 
methods, based on HMMs. The section begins with a brief summary of some labeling 
modifications that were needed in order to be able to do some of the experiments reported 
in this section. 

In the RASC863 database tones are labeled as numbers after syllable finals. The 
numbers 1 to 4 represent high tone, rising tone, dipping tone and falling tone, 
respectively. Syllable finals with a neutral tone, which indicates that there is no major 
change in pitch and the pitch is not particularly high, is labeled with number 0. Their 
equivalent labels used for HTK experiment are “H,” “R,” “D,” “F” and “N.” 
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Also, all consonants (syllable initials which have no tone) will be modeled as one 
“INIT” model as the goal here is recognizing tones (explicit tone recognition0. “SIL” is 
used for modeling all silence and short pause intervals.  Therefore, a total of 7 HMMs, as 
shown in Table 14, are created and trained and evaluated through the experiments.  

Table 14: HMMs required for tone recognition (monotone) 
Tones (5) Other (2) 

High (H) Silence (SIL) 
Syllable initials (INIT) 
 Rising (R) 

Dipping (D) 

Falling (F) 

No-tone (N) 

 

3.4.4.2 TONE RECOGNITION USING HIDDEN MARKOV MODELS 

In contrast to the tone classification work reported in the previous section, in this section 
tone recognition work is reported.   Note that for classification, labeled boundaries are 
used.  For the more difficult recognition task, boundaries must be automatically 
determined.  As for all recognition results given in this report, the automatic recognizer is 
built with Hidden Markov Models (HMMs) using HTK Ver3.4. This toolkit allows 
complete flexibility in terms of the number of mixtures, number of states, types of 
transitions, and provides for language modeling.  Note that the recognizer is expected to 
be of lower accuracy than the classifier, both because recognition is more difficult than 
classification, and since more categories are modeled (7 vs 4 for the classification task). 
On the other hand, as mentioned later, the tone recognizer used a bigram language model, 
versus no language model for the tone classification,  thus giving additional information 
to the recognizer,  making the task easier. 

5 tones (High, Rising, Dipping, Falling and Neutral), silence, and all syllable initials 
(consonants) were modeled by 7 left-to-right 3-state HMMs with no skip states allowed. 
A bigram language model was also built from the statistical data of all transcriptions.  

Figure 19 shows the results for the experiment that compares two feature sets; pitch plus 
47 DCTC/DCSCs, and DCTC/DCSCs only. The total number of features used for this 
experiment was fixed at 48.  The frequency range used for DCTC calculations was 50 to 
7000 Hz and 16 mixtures were used for HMM training. The time warp was fixed at 21 for 
all these experiments. 
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 Figure 19: Tone recognition accuracy for two features sets as a function of total 
segment length 

 

A series of test similar to those described in section 6.3.2 for investigating the optimal 
time warp was performed here. 11 DCTCs computed from a frequency range of 50Hz to 
5500Hz were each represented by 4 DCSCs.  Log energy and 3 DCSC of pitch were also 
used as the features.  Thus, in total 48 features we used.  Typical numbers used in 
research for tone recognition (200ms, 250ms and 300ms) were chosen as the block length 
for computing DCSCs. Then a range of time warping values (from previous research) 
was tested for each time length. The best accuracy of 66.2% was obtained using 200ms 
block length with time warp 13 (Figure 20).  16 mixtures were used to model 7 HMMs 
(Table 14) in this test. 

 

Figure 20: Tone recognition accuracy for three block lengths as a function of time 
warp value 
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The results of searching for the optimal segment length and time warping value that were 
used for computing DCSC terms of pitch are shown in Figure 21.   

In this experiment, the components of the feature set, number of mixtures used for 
GMMs, frequency range of DCTC compression, etc., are all identical to the values used 
for the results shown Figure 20. The block length for the temporal trajectory features of 
DCTCs was fixed at 200 ms (that is a 200ms interval was used to compute the DCSCs of 
the DTCTCs), and the time warping factor was selected as 13, as used before.  However, 
for the case of pitch, various block lengths and time warping factors were explored for 
the DCSC expansion of pitch.   

Results are shown in Figure 21.  Note, for these results, the 44 DCTC/DCSC terms and 
log energy were computed identically as for the results given above.  However, the way 
in which the pitch feature (which is likely to be the single most important feature), is 
varied, in terms of block length and time warping factor used for the DCSCs of pitch. It 
appears that the best choice for pitch representing pitch trajectories is to use a block 
length of about 110ms and time warping of about 0.   

 

Figure 21: Tone recognition accuracy for three block lengths as a function of time 
warp value for pitch DCSCs 

Another way to improve the overall accuracy is employing more mixtures for HMM 
training. The data amount given from RASC863 is only able to support 24 mixtures for 
Gaussian modeling of 60 basic phones (e.g. running a basic phone recognition test in 
Figure 6 without crashing for the error of “Too few observations”). Due to the fact there 
are only 7 HMMs required to be modeled by the exact same data for the tone recognition 
job, the number of mixtures used on each tone (or initial or silence) can stably go up to 
65 (or more). 

Overall, an accuracy of 71.4% tone recognition accuracy has now been achieved (by 
January of 2013) using 12DCTCs/5DCSCs, 5 DCSCs of pitch, and  log energy (which 
actually replaces the last DCSC of the last DCTC). This system of 65 Features was 
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modeled by 65 Gaussian mixtures. The segment block length of the DCSC was set to 
200ms with a time warping value of 13 while the segment length of 90ms with no 
warping was used to compute  pitch DCSCs.  

3.4.4.3 BITONE RECOGNITION USING HMMS 

Two methods for splitting and regrouping tone labels were introduced (Figure 3 and 
Figure 4). The hypothesis was that tones might be more accurately recognized in pairs 
rather than in isolation.   Method 1 uses modeling for 5 single tones (High (H), Rising(R), 
Dipping(D), Falling(F), Neutral(N)) and all their combinations except NN (29 total) , 
plus one for silence (SIL).  Thus there are 30 models total for method 1. The models in 
method 2 include all pair-wise combinations of (SIL, H, R, D, F, N) except NN and SN. 
Thus, for method 2, there are 34 total models.  See table 15 for details of the number and 
names of models. 

Table 15: HMMs required for tone recognition (Bitone) 
Method 1 (30 HMMs) Method 2 (34 HMMs) 

SIL, H, R, D, F, N, HH, HR, HD, HF, HN,  RH, 
RR, RD, RF, RN, DH, DR, DD, DF, DN, FH, FR, 
FD, FF, FN, NH, NR, ND, NF 

SH, SR, SD, SF, HH, HR, HD, HF, HN,  RH, RR, RD, RF, 
RN, DH, DR, DD, DF, DN, FH, FR, FD, FF, FN, NH, NR, 
ND, NF, HS, RS, DS, FS, NS 

 

 

Figure 22: Tone recognition using Bitone structure 
Figure 22 shows the results obtained for recognizing Bitone models from two methods in 
table 15. 24 DCTC/DCSC features were selected and modeled by 8 Gaussian mixtures 
(same configuration as used for results shown in Figure 19). The time warp value for 
each DCSC length was chosen to be the optimal for that case. The overall results shown 
in this figure suggest using a longer DCS (500ms or longer) might be better to encode the 
sound having a bitone structure for it very likely longer than monotone vowels. 
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Overall, the Bitone method did not appear promising and is not being actively pursued at 
this time.  The major concern about this technique is that,  compared to only 7 models 
needed for monotone modeling, the Bitone methods require  more than 30 HMMs, and 
the amount of training data is the same for both methods. Without a larger database, it 
would be very difficult to achieve competitive accuracy. Additionally, the DCSC features 
which are based on long time intervals, likely account for most of the coarticulation 
effects that Bitones are intended to compensate for. 

3.4.5 Conclusions 
In this section, we looked at the ability of human listeners to recognize tones extracted 
from continuous Mandarin Chinese,  we looked at the accuracy of two automatic methods 
for classifying (using neural networks) or recognizing (using Hidden Markov Models),  
and compared the human and automatic methods. 

The experimental results obtained with native speakers indicate that humans need context 
to recognize tones very accurately. Nonnative speakers find this task nearly 
impossible.  Without context, machine recognition and human recognition have about the 
same accuracy, but with different patterns of errors. 

The most interesting and potentially significant result of this work is that reasonably 
accurate tone classification and recognition can be obtained without using a pitch feature. 
However, pitch does seem to be the single most important feature for tone recognition, 
and adding pitch to spectral/temporal features for tone recognition is preferred. 

3.5 Spectral Analysis Methods 

3.5.1 Introduction 
All automatic speech recognizers perform spectral analysis at the front end which 
converts the speech signal, possibly noisy and/or degraded, into values from which useful 
features can easily be computed. The front end spectral analysis is performed by 
calculating the short time Fourier transform (STFT) of the speech signal, either using an 
FFT, a filter bank, or a combination of the two methods. For the combination method, the 
filter bank is approximated by summing weighted combinations of FFT magnitude 
values. The filter bank approach, even if derived from FFT values, is thought to be 
advantageous since it can be designed to mimic the functionality of the cochlea of the 
human auditory system, such as a nonlinear (“warped”) frequency scale.  

The majority of ASR systems are implemented using a Mel filter bank as the spectral 
analysis front end, followed by a cosine transform based feature extraction which is 
shown to outperform other signal processing methods [23]. Very recently, there is 
another filter bank that has been presented as a superior alternative to the triangular-
shaped Mel filters called the Gammatone filter bank, which simulates the motion of the 
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basilar membrane within the cochlea of the human auditory system. It was first 
introduced by Johannsma (1972) to describe the shape of the impulse response function 
of the auditory system as estimated by the reverse correlation function of neural firing 
times. The general thinking is that since the Gammatone filter bank approximates the 
human auditory system better than the Mel filter bank, it should also be superior for ASR 
applications. 

The Gammatone filter is defined in the time domain (impulse response function) as: 

         𝑔(𝑡) = 𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑡cos (2𝜋𝑓𝑡 + Ø)            (1) 

Where f is the frequency, Ø is the phase of the carrier, 𝑎 is the amplitude, n is the filter 
order, b is the bandwidth and t is  time. 

Front-end spectral analysis can also be performed without using any filter bank, but 
simply using an FFT directly. In either case, spectral values (that is FFT values or filter 
bank outputs, both converted to magnitudes), are typically reduced in dimensionality 
using some type of cosine transform. If the filter bank step is used, cosine basis vectors 
can be used directly. However, if the FFT magnitudes are used as the direct input to the 
cosine transform, the cosine basis vectors should be modified to account for the non-
uniform frequency resolution. In order to incorporate spectral trajectory information into 
ASR feature sets, additional terms are generally computed from blocks of frame-based 
features, such as delta terms.  

In the following sections we compare spectral features computed as cosine transforms of  
filter bank outputs with features computed as modified cosine transforms (DCTCs) of 
FFT spectral magnitudes directly. We also compare delta type trajectory features with 
trajectory features computed over much longer time intervals using another set of 
modified cosine basis vectors (DCSCs). More details of the more common spectral and 
feature calculation method (MFCCs with delta and delta-delta terms are given in [24] and 
[25]. More details of the DCTC/DCSC general method are given in [26] and [27]).  All 
the methods are evaluated using as much similarity of parameters and recognizer as 
feasible (such as frequency range, # of HMM mixtures, etc.) in order to make 
comparisons most meaningful. 

3.5.2 FFT Based Spectral Analysis 
The most common front end spectral analysis method for speech recognition uses a 
frame-based approach in which the time varying speech signal is described by a stream of 
feature vectors, with each vector reflecting the spectral magnitude properties of a 
relatively short (10-25ms) segment (frame) of the signal. For experimental results 
reported in this paper, 16 kHz sampling rate speech signals are short-time Fourier 
transform (STFT) analyzed using a 10ms Kaiser window with a frame space of 2ms. The 
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spectrogram of a typical speech signal is as shown in Figure 23. The FFT spectral values 
are used as the front-end for DCTC/DCSC feature extraction, as described later. The 
frame length and frame spacing mentioned were empirically determined as providing 
most accurate ASR results. 
 

 

Figure 23: FFT spectrogram 

3.5.3 Filter Bank Based Spectral Analysis 
A filter bank can be regarded as a crude model for the initial stages of transduction in the 
human auditory system. A set of band pass filters is designed so that a desired portion of 
the speech band is entirely covered by the combined pass bands of the filters composing 
the filter bank. The output of the band pass filters are considered to be the time varying 
spectrum representation of the speech signal.  

For the experiments given in this paper, we evaluate two commonly used filter 
banks: the Mel filter bank and Gammatone filter bank. Either the DCTC/DCSC method 
(but without frequency warping) or the more common method used for MFCC features 
(i.e., delta terms rather than DCSCs) are used. Results are compared for the filter bank 
approaches versus the FFT-only spectral method.   
 

3.5.3.1 MEL FILTER BANK 

The Mel filter bank is series of triangular band pass filters, as depicted in Figure 24, 
designed to simulate the band pass filtering believed to be similar to that occurring in the 
auditory system. 
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Figure 24: Frequency response of 16 channel Mel filter bank and the normalized 
versions of the filters, as used for MFCCs. 

 
 

To convert the frequency in Hz into frequency in Mels the following equation is used:  
                  

    𝑚 = 1127.01048 ∗ 𝑙𝑜𝑔𝑒 �1 +  𝑓
700
�               (2) 

 
On a linear frequency scale, the filter spacing is approximately linear up to 1000 Hz and 
approximately logarithmic at higher frequencies. For actual implementation, the Mel 
filter bank is computed by first computing the power spectrum with an FFT, and then 
multiplying the power spectrum by the Mel filter bank coefficients. In Figure 25 is shown 
a spectrogram based on 32 Mel filters. Note that this spectrogram is qualitatively similar 
to the direct FFT spectrogram shown in Figure 23. The details of the two spectrograms 
are quite different since the frequency range is more quantized in Figure 25 and the 
frequency scale is effectively in Mels rather than linear. However, it should be noted that 
the Mel spectrogram, or Mel filters, are derived from the FFT spectral values and thus are 
simply an intermediate step in processing.   
 

 

Figure 25: 32 channel Mel Spectrogram  



Approved for Public Release; Distribution Unlimited.  
33 

 

 

3.5.3.2 GAMMATONE FILTER BANK 

A Gammatone filter is a linear filter with impulse response described as the product of a 
(gamma) distribution and sinusoidal (tone), hence the name Gammatone. The filter bank 
is a combination of individual Gammatone filters with varying bandwidth based on the 
Equivalent Rectangular Bandwidth (ERB) scale. For moderate sound pressure levels, 
Moore et al [28] [29] estimated the size of ERBs for humans as:  

   
 𝐸𝑅𝐵[𝑓] = 24.7 + 0.108 ∗ 𝑓𝑐                  (3) 

 
The value ERB[f] is used as the unit of center frequency 𝑓𝑐  on the ERB scale. For 
example, the value of ERB[f] for a center frequency of 1 kHz is about 132.64, so an 
increase in frequency from 975 to 985 Hz represents a step of one ERB[f]. Each step in 
ERB roughly corresponds to a constant distance of about 0.89 mm on the basilar 
membrane [30].   

As the center frequency increases the bandwidth of the filter bank increases. A 16 
channel Gammatone FFT based filter bank frequency response is shown in Figure 26. 
 

 

Figure 26: Frequency response of 16 channel Gammatone filter bank 
 

The Gammatone filter bank can be implemented using sums of weighted FFT 
power spectrum values, exactly as for the Mel filter bank except using the weights 
corresponding to Figure 26, rather than the Mel filter weights shown in Figure 24. 
Alternatively, the Gammatone real filters can be implemented as actual IIR or FIR filters, 
followed by rectification and low pass filters, as depicted in Figure 27.  Figure 28 depicts 
the Gammatone spectrogram of the same sentence as was used to construct the 
spectrograms for Figures 23 and 25. 
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Figure 27: Block Diagram of Gammatone using actual filter (difference equation in 
first block 

 

 
Figure 28: 32 channel Gammatone spectrogram 

3.5.4 Experimental Evaluation 
Phonetic recognition experiments were conducted using the TIMIT phonetically-labeled 
database. 3296 sentences from 462 speakers were used for training and 1344 sentences 
from 168 speakers were used for test.  SA sentences were excluded. A frequency range of 
100 to 8000 Hz was used for all experiments. Experiments were conducted with clean, 20 
dB SNR, 10 dB SNR, and 0dB SNR speech. For all conditions, training and test 
conditions were matched with respect to noise; additive white Gaussian noise was used 
for noise. 

The objective of the experiments was to compare phoneme recognition accuracy 
of four spectral analysis methods, as depicted in Figure 29, and also to compare to a 
control case (13 MFCCs with delta and acceleration terms, or 39 total terms, derived 
from a Mel filter bank, as implemented in HTK). 
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Figure 29: Block diagram of automatic speech recognition process 
 
Five cases, as depicted in Figure 29, and outlined below were tested. 
Case 1: FFT spectrum directly used as front end for DCTC/DCSC feature, using 
frequency warping shown in the Figure 24. 

 
Figure 30: Mel frequency warping used for Mel filter bank center frequencies (top 

red curve), and “optimum” Mel frequency warping used for FFT-
only/DCTC/DCSC method (bottom blue curve) 

 
Case 2: DCTC/DCSC feature extraction applied to Mel filter bank spectrum. Since the 
filter bank already has warping in it, the DCTC basis vectors have no warping.  
 
Case 3&4: Gammatone filter banks (FFT-based and actual filters cases) used as front end 
for DCTC/DCSC features, with no frequency warping used for DCTCs.  
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Case 5: HTK MFCC features with delta and acceleration terms. 
For all experiments with DCTC/DCSC features, a frame spacing of 2 ms (500 

frames per second) was used.  Blocks were comprised of 150 frames (300 ms) and spaced 
8 ms apart (125 blocks per second). Experiments were conducted with both 78 features 
(13 DCTCs times 6 DCSCs), and the more standard 39 features (13 DCTCs times 3 
DCSCs).  
HMMs with 3 hidden states from left to right with 16 Gaussian mixtures were used for 
phonetic recognition experiments.  A total of 48 (eventually reduced to 39 phones) 
context independent monophone HMMs were created using the HTK toolbox (Ver3.4) 
[16]. The bigram phone information extracted from the training data was used as the 
language model. 
 

3.5.5 Results 
Phonetic recognition accuracy (based on 39 phones) obtained for all 5 cases is given in 
Table 16. It can be seen that there is negligible or no improvement when filter bank 
techniques are used. For results in Table 16, 39 features were used.  The experiment was 
repeated with 78 features for all cases except MFCC, and results are given in Table 17.  
 
 
 

Table 16: Accuracy (%) comparison for 39 features 
SNR 
(dB) 

FFT 
only 

Mel 
FB 

Gammatone 
FFT FB 

Gammatone 
Real FB 

MFCC 

Clean 69.18 68.52 69.75 69.12 62.83 
20 dB 64.19 63.47 63.74 63.39  
10 dB 56.32 54.99 55.76 55.03 
0 dB 42.21 41.45 41.42 40.53 

 
 

    Table 17: Accuracy (%) comparison for 78 features 
SNR (dB) FFT only Mel FB Gammatone FFT 

FB 
Gammatone Real 

FB 

Clean 71.20 69.70 71.06 70.11 
20 dB 65.83 64.65 65.80 64.93 
10 dB 58.03 57.01 58.13 56.94 
0 dB 43.40 42.46 42.83 41.82 

 
Table 16 and 17 show the experimental results for 16 mixtures. The same experiments 
were performed, except 32 mixtures were used for HMMs, and the results are as shown 
in Table 18 and 19.  
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      Table 18: Accuracy (%) comparison for 39 features 
SNR 
(dB) 

FFT only Mel FB Gammatone FFT Gammatone Real 

Clean 71.10 69.71 71.04 70.97 

20 dB 65.74 65.41 65.47 65.19 
10 dB 57.04 56.64 56.45 56.25 

 

Table 19: Accuracy (%) comparison for 78 features 
SNR 
(dB) 

STFT Mel FB Gammatone FFT Gammatone Real 

Clean 73.00 71.10 72.99 72.23 

20 dB 67.89 67.05 67.69 66.95 
10 dB 59.43 58.68 59.39 58.96 

 
 
As yet another test, Table 20 shows the accuracy obtained with the Gammatone 

filter bank as the number of channels is varied from 8 to 128. Although there is a very 
slight improvement when using 64 channels, this comes at the expense of more 
computational time and complexity, so we considered the “standard” as 32 channels for 
the Gammatone filters.  Note that performance for the Gammatone case also decreases 
slightly if 128 filters are used.  It should also be pointed out that, for the Mel filter bank 
approach, 32 filters were also used for the results given above.  

 

Table 20: FFT Gammatone performance as number of filters is varied. 
SNR 

(dB)/Channe
ls 

8 16 32 48 64 128 

Clean 64.51 69.36 71.06 71.29 71.37 71.05 
20 dB 60.06 64.78 65.80 65.82 65.94 65.90 
10 dB 50.78 56.03 58.13 58.12 59.33 58.06 

 
More experiments were performed using Mel filter bank by computing the logarithm 
before applying the triangular filters as stated in [33], or computing the logarithm after 
the filter bank output as stated in [34], and as used for the Mel filter bank results reported 
above. Results are shown in Tables 21 and 22.  For ease of comparison, the results for log 
after the filter bank are repeated.  Accuracy is higher for cases where the log is after the 
filter bank,  as was used for the results reported above. 
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Table 21: Accuracy (%) of Mel FB for 39 features and 16 mixtures 
 

 

 

 

 

Table 22: Accuracy (%) of Mel FB for 78 features and 16 mixtures 
 

 

 

 

3.5.6 Conclusion 
From the experimental data, we conclude that FFT-based spectral analysis in both clean 
and noisy conditions with a Mel-like frequency scale incorporated using frequency 
warping for DCTC features performs nearly identically to cochlea-motivated filter bank 
spectral analysis.  Directly using the FFT spectrum, without the intermediate filter bank 
prior to  feature calculations, has the advantage of simplicity and would appear to be a 
better front end strategy for spectral front end calculations for speech processing.  The 
DCSC method for computing spectral trajectory features is experimentally shown to 
result in much higher ASR accuracy than obtained with delta and delta-delta terms. 
 

3.6 Report on Mandarin Syllable Level Label Aligning 

3.6.1 Introduction and Motivation 
Previously (another report), we reported that automatic methods were used to label 
Mandarin at the syllable levels. Similar methods were used for detailed labeling of 
English and found to perform well.  However, careful checking of the labels for the 
Mandarin showed that the syllable level labels were extremely inaccurate (probably of 
very little value).  In order to develop better automatic methods (the real objective), it is 
very useful to first have a good set of manual labels.  Given that several native speakers 
of Mandarin, all electrical engineering majors, who had come to the US to attend 
Binghamton University from China in 2011,  and  were available and working as part of 
the speech group at SUNY Binghamton, these students were recruited to perform the 
tedious but important task of accurate manual labeling of the Mandarin database. Five 
students participated, and each of the students was asked to correct the labels for 60 

SNR (dB) Mel 
FB (with log before FB) 

Mel 
FB (with log after FB) 

Clean 67.87 69.71 
20 dB 62.83 65.41 
10 dB 54.10 56.64 

SNR (dB) Mel 
FB (with log before FB) 

Mel 
FB (with log after FB) 

Clean 69.30 71.10 
20 dB 64.28 67.05 
10 dB 55.83 58.68 
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passages (total of 300 passages).  The students began with the automatically determined 
labels, and using tools and methods described below, listened and observed the speech 
files to correct these labels (starting and stopping times for each monosyllable).  The 
remainder of this section of the report describes the process the students used for this 
manual labeling. 
 
 

3.6.2 Preparation 
The aligning work was done with software called “WaveSurfer.”  Two files were used: 
 - wavesurfer.exe (available at http://sourceforge.net/projects/wavesurfer/) 
 - wavesurfer.conf  
The configuration file is not necessary to use WaveSurfer. However, it was created by 
one of the former researchers in our group (Dr.  Montri Karnjanadecha) so that 
WaveSurfer would be more useful as an aligning tool. To begin the labeling process, the 
researcher should first run “WaveSurfer.exe” and a window, as shown in Figure 31, will 
be displayed. 
 

 

Figure 31: WaveSurfer Window 
 

After clicking the “file open” icon (red arrow), the researcher can browse to a “*.wav” 
file (wave file) and open it. After clicking “Open,” the researcher will see a dialog 
(Figure 32). 
The researcher should select “wavesurfer” and click “OK.” (When there is no 
“wavesurfer.conf” in the same directory as “WaveSurfer.exe,” the researcher will not be 
able to choose “wavesurfer” configuration. The researcher can choose “Demonstration” 
configuration, which is very similar.) The waveform and spectrogram of the “*.wav” file 
will be displayed on the screen (Figure. 32). 
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Figure 32: Typical initial waveform and spectrogram display 
 

The researcher should 
right-click anywhere 
inside the transcription 
pane (the blank pane 
inside the red rectangle in 
Figure 33) and select 
“Load Transcription…” 
Then the researcher 
should browse to the 
matching “*.lab” file 
(label file) and click 
“Open.” The labels will 
then appear (Figure. 33).   
 

 

3.6.3 Basic Functions 
Playing Audio: 
The researcher can click and drag to select a segment of the speech signal (In Figure 34, 
the dotted area inside the red rectangle is selected.). To play the audio of a selected part, 
one can click the “Play” button (red arrow) or press the space key. If every label in 
“Figure 34” is correct, when the “Play” button is pressed, the audio should match the 
Pinyin pronunciation of “DA4.” Similarly, the segment of speech inside the “label 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

 

Figure 33: Illustration of label display with 
markers 
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borders” of “HA1” (inside the green rectangle, “label borders” refer to the vertical black 
lines) should match the Pinyin pronunciation of “HA1.” 
 

Inserting, Deleting and Adjusting Labels (details in “Frequent Problems” part of this 
report). The right-click menu from the transcription pane allows a researcher to insert or 
delete a label. To adjust the position of a label, one just needs to click and drag the label. 
 
After completing the portion in the current window, the researcher can move to the next 
part by scrolling the mouse wheel. The gray pane at the bottom (in the yellow rectangle) 
is a miniature of the waveform of the whole wave file. The bar pointed to by the green 
arrow is a miniature of the waveform on the top window. The researcher can also click 
and drag the rectangle to move to other parts quickly. One can zoom in and zoom out 
(pink arrow on top) to adjust the coverage of the current window. 

 

Figure 34: Illustration of displays with Pinyin labels and markers on basic functions 
 

3.6.4 Frequent Problems 
1.  Positional Problems 
 
 
 
A label and its corresponding audio do not align. This is the most typical problem—an 
alignment error. To fix this type of error, the researcher needs to click and drag the label 

Figure 35: Position adjustment 



Approved for Public Release; Distribution Unlimited.  
42 

 

markers to move them to the correct position. Figure 35 is a “close-up” of the 
transcription pane when a label endpoint is being moved. 
 

2.  Incorrect Labels 
 
 
 
A label is incorrect. The researcher can click the word and edit (change the label). Figure 
36 is a “close-up” of the transcription pane when a label is being selected. 
 

3.  Missing Labels or Redundant Labels 
A label is missing or redundant. The researchers can right-click at the label in the 
transcription pane to insert or delete the label. Figure 37 is a “close-up” of the right-click 
menu. 
 
 
 
 
 
 

 

4.  Lack of Auto-saving 
This is an inconvenience rather than a problem due to inaccuracy in the automatic 
labeling.  However, it can cause a large waste of time in the manual labeling process. 
WaveSurfer does not auto-save the changes in transcription when a computer crashes. 
Moreover, if the researcher mistakenly clicks “Close,” there will not be any prompt 
window and the work will be lost. The “Save” button on top left (blue arrow on Figure 
34) is not for saving transcriptions. To save the aligning work, one must right-click the 
transcription pane and click “Save all Transcriptions…” (green arrow on Figure 37). 
Saving regularly minimizes loss of work. 

3.6.5 Feedback from Five Researchers 
1. Time Consumption 

Table 23: Length of (researcher) time to align files 

Time spent on completing one file (hours) 
Maximum 8 
Minimum 1 
Average 4 

Figure 36: Selected label 

Figure 37: Menu for inserting or deleting labels 
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2. Improvement on Speed 
Generally speaking, all researchers got faster at aligning as they did more files. However, 
after the researchers completed about 10 files, their speed tended to remain about the 
same. 
 

3. Accuracy of labeling before Manually Aligning (Approximately) 

 

Table 24: Estimates of accuracy of automatic labeling 

Accuracy Percentage 
>50% 3% 

40%~50% 8% 
30%~40% 8% 
20%~30% 25% 
10%~20% 33% 

<10% 33% 
 
4 Features of the High-Accuracy Files 
The files which were more accurate to begin with had the following features (Figure 38 is 
a snap shot of a high-accuracy file.): 
 a.  low background noise (In Figure 38 , the segment inside red rectangle is  
 without  speech. The amplitude of the waveform is almost zero and there is 
 nothing in the  spectrogram.) 
 b. The speaker speaks slowly. (The duration of each syllable is comparatively 
 long.) 
 c. The speaker speaks clearly (The “pulses” are full and of regular shape.) 
 d. Generally speaking, female speakers’ speech is aligned better by the 
 automatic aligning. 
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5. Features of the Low-Accuracy Files 
The files which were less accurate to begin had the following features (Figure 39, Figure 
40 and Figure 41 are snap shots of low-accuracy files.): 
 a. high background noise (In Figure 39, the segment inside the red rectangle is 
 without speech. Its amplitude is almost the same as the amplitude of speech 
 waveform.) 
 b. The speaker speaks very rapidly. (In Figure 39, the part inside the green 
 rectangle is a segment of fast speech. Before manual alignment, the 
 computer regarded the whole segment as one syllable.) 
 c. The recorder or microphone is of low quality (In Figure 40, the waveforms are 
 “fluffy.” The audio of that speech is “veiled,” sounding somewhat like the speaker 
 is behind a curtain.  The audio is not very easy to understand.) 
 d. The speech is too loud. (In many places on Figure. 41, the waveform exceeds 
 the borders of the window. Automatic aligning performed poorly for “loud” 
 files.) 
 

Figure 38: High accuracy example of automatic aligning 
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Figure 39: Low accuracy example of automatic aligning (difficult to 
understand) 

Figure 40: Low accuracy example of automatic aligning (difficult to 
understand) 
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3.6.6 General Strategy 
The manual aligning of a label consists of three steps: 
 a. Look at the waveform and estimate the general position of a series of syllables. 
 The valleys are very likely to be the boundaries of the syllables. (In Figure 42, the 
 red arrows all point to valleys which were ultimately selected as boundary points.) 

 

Figure 41: Low accuracy example of automatic aligning (nearly flat envelope) 

Figure 42: Waveform that is very helpful for estimating syllable position 
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a. Select a series of syllables and play them. By listening to the audio, find the 
stopping point of the right-most syllable. (The five researchers all agreed that 
playing a series of syllables is better than playing single syllables one at a time.) 
b. Move the matching label to the position of the stopping point. 
c. Adjust the right margin of the “selection area” to the left and try to identify the 
stopping point of the second right-most syllable by listening to the audio. 
d. Repeat the procedure “c” and “d” until the series of syllables are all correctly 
labeled.  
e. Scroll the mouse wheel to move on to the next series of syllables. Then repeat 
“a”, “b”, “c”, “d”, “e” until the whole file is finished. 
 

3.6.7 Difficult Cases for a Researcher 
a. Hard to Follow 
Sometimes a speaker has an accent or speaks too rapidly, which will make a 
researcher unable to distinguish the syllables from one another. (In the green 
rectangle of Figure 39)  
b. “Flat” Waveform 
The envelope of the waveform can often help a researcher estimate the position 
of syllables. However, in some files, speakers speak very quietly or the 
background noises are too loud, which makes the waveform envelope nearly flat. 
A researcher needs to listen much more times to locate the syllables. (In the red 
rectangle of Figure 39) 
c. Serious Positional Problems 
Sometimes a label was misplaced nearly 100 syllables away from where it 
should be. 

 

3.6.8 Easy Cases for a Researcher 
a. Mild Positional Problems 
Some positional problems are not serious. Sometimes a misplaced label is only 
one drag away from the correct position. 
b. Interesting Speech 
When a female researcher listens to speech about makeup (or any other 
interesting topic) or when a male researcher listens to speech about videogames, 
it is less boring for the researcher to do aligning. 
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3.6.9 Headphones 
The five student researchers used high quality headphones, with brands and model 
numbers as indicated in the table below. 
 

Table 25: Summary of headphones used for listening to audio 
 

 

 
 
 
 

 

4 Results and Discussions 
Each subsection of the main body of the report has its own results and discussion. 
Automatic classification and automatic recognition experiments were completed for 
Mandarin lexical tone identification. The highest classification accuracy obtained is about 
76%. Highest recognition accuracy obtained was about 71%. These results compare 
favorably with the accuracy of native human listeners for tone recognition, when only 
limited context is available. In other work, with phone recognition for base syllables 
approximately 69% phone recognition accuracy was obtained. Complete character 
recognition has not yet been done. 

5 Conclusion 
Each subsection of the main body of the report has its own conclusion. 

6 References:  
 
[1] Wikipedia: “List of language by number of native speakers” 

http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers 

[2] Wang, H.M., Shen, J.L., Yang, Y.J., Tseng, C.Y., and Lee, L.S., (1995). "Complete 
recognition of continuous Mandarin speech for Chinese language with very large 
vocabulary but limited training data," Proc. ICASSP 1995, Vol 1, pp.61-64. 

[3] Zahorian, S.A, Silsbee, P., and Wang, X., (1997). “Phone classification with 
segmental features and a binary-pair-partitioned neural network classifier,” Proc. 
ICASSP 1997, pp.1011-1014. 

[4] Zahorian, S. A., and Hu, H., (2008). “A spectral/temporal method for robust 
fundamental frequency tracking,”  Journal of the Acoustic Society of America, Vol. 
123, Issue 6, pp. 4559-4571. 

Researcher Brand Model Number 
Chen, Xiao Sennheiser PX80 
Mao, Mao Logitech  
Pan, Xu Philips SHE3590 
Zhang, Hao HP BHP-95NCV 
Zhang, Zifan Sennheiser HD 280 Pro 



Approved for Public Release; Distribution Unlimited.  
49 

 

[5] Huang, H. C.-H. and Seide, F. (2000). "Pitch tracking and tone features for Mandarin 
speech recognition." Proc. IEEE International Conference on Acoustics, Speech, 
and Signal Processing (ICASSP 2000), Vol.3, pp.1523-1526. 

[6] Liu, Z., Zhang, P., Shao, J., Zhao, Q., Yan, Y. and Feng, J. (2007). "Tone recognition 
in mandarin spontaneous speech."  Proc. of the 4th International Conference on 
Non-Linear Speech Processing (NOLISP 2007). 

[7] Chang, E., Zhou, J.L., Di, S., Huang, C., and Lee, K.F., (2000). "Large vocabulary 
Mandarin speech recognition with different approaches in modeling tones," ICSLP 
'00. 

[8] Zhou, J.L., Tian, Y., Shi, Y., Huang, C., and Chang, E., (2004). "Tone articulation 
modeling for Mandarin spontaneous speech recognition."  Proc. International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), Vol. 1, 
pp. 997-1000. 

[9] Wang, C., and Seneff, S., (2000). "Improved tone recognition by normalizing for 
coarticulation and intonation effects," Proc. ICSLP 2000,  pp.83-86. 

[10] Lin, W.-Y., and Lee, L.-S., (2003) "Improved tone recognition for fluent Mandarin 
speech based on new inter-syllabic features and robust pitch extraction," IEEE 8th 
Automatic Speech Recognition and Understanding Workshop, PP.237-242. 

[11] Chang, E., Zhou, J. L., Do, S., Huang, C., and Lee, K. F., “Large Vocabulary 
Mandarin Speech Recognition with Different Approaches in Modeling Tones,” 
2000, ICSLP 2000.  

[12] Zhou, J. L., Tian, Y., Shi, Y., Huang, C., and Chang, E., "Tone articulation modeling 
for Mandarin spontaneous speech recognition," Proc. ICASSP 2004, Vol. 1, pp. 
997-1000.  

[13] Wang, S., W., and Levow, G., "Improving Tone recognition with Combined 
Frequency and Amplitude Modeling," Interspeech, ICSLP, 2006.  

[14] Li, A., and et al., "RASC863-A Chinese Speech Corpus with Four Regional 
Accents," Chinese Academy of Social Sciences technical report, 2004.  

[15] "TIMIT Acoustic-Phonetic Continuous Speech Corpus," Linguistic Data Consortium 
(LDC) report.  

[16] S.A. Zahorian, Hongbing Hu, Zhengqing Chen, Jiang Wu, “Spectral and Temporal 
Modulation Features for Phonetic Recognition,” Interspeech 2009. 

[17] O. Kalinli, “Tone and Pitch Accent Classification Using Auditory Attention Cues,” 
IEEE ICASSP, pp. 5208-5211, 2011. 

[18] X. Lei, M. Siu, M.Y. Hwang, M. Ostendorf and T. Lee, “Improved Tone Modeling 
for Mandarin Broadcast News Speech Recognition,” IEEE ICASSP, pp. IV - 665 - 
IV - 668, 2007. 

[19] Y. Lai and S.H. Wu, “The Effect of Segmental Makeup on Mandarin Word and 
Tone Recognition,” meeting of Acoustical Society of America, Kansas City, 2012. 



Approved for Public Release; Distribution Unlimited.  
50 

 

[20]  R. Wayland, D. Laphasradakul, E. Kaan, R. Cao, “Perception of Pitch Contours 
among Native Tone Listeners,” Interspeech 2012, Wed.08c.01, Portland, 2012. 

[21] S. Promo-on, F. Liu, and Y. Xu, “Post-low Bouncing in Mandarin Chinese: Acoustic 
Analysis and Computational Modeling,”  Journal of Acoustical Society of America 
, pp. 421-432, 2012. 

[22] J. Zhou, T. Ye, Y. Shi, C. Huang and E. Chang, “Tone Articulation Modeling For 
Mandarin Spontaneous Speech Recognition,” IEEE ICASSP , 2004. 

[23] S. B. D and P. Mermelstein, “Comparison  of  parametric representations for 
monosyllabic word  recognition in  continuously spoken sentences,” IEEE Trans. 
Acoustic., Speech, Signal Processing, vol. ASSP- 28,  no. 4,  pp. 357-366,  1980 

[24] Md. Afzal Hossan, S. Memon, M A Gregory, “A novel approach of MFCC feature 
extraction,” IEEE Trans. On Signal Processing and Communication 2010 4th 
international conference. 

[25] Wu Junqin, Yu Junjun, “An Improved Arithmetic of MFCC in Speech Recognition 
System,” IEEE 201, pp 719-722 

[26] S.A. Zahorian, Silsbee, P., and Wang, X., “Phone Classification with Segmental 
Features and a Binary-Pair partitioned Neural Network Classifier,” Proc. ICASSP 
1997, pp.1011-1014, 1997. 

[27] M. Karjanadecha and S.A. Zahorian, “Signal Modeling for High-Performance 
Isolated Word Recognition,” IEEE Trans. on Speech and Audio Processing, 9(6), 
pp.647-654, 2001. 

[28] S. Strahl, “Analysis and design of Gammatone signal models,” J. Acoust. Soc. Am. 
126, pp. 2379-2389, 2009.  

[29] B. Moore, R. Peters, and B. Glasberg, “Auditory filter shapes at low center 
frequencies,” J. Acoust. Soc. Am. 88, 132–140, 1990. 

[30] B. Moore and B. Glasberg, “A revision of Zwicker’s loudness model,” Acta. Acust. 
Acust. 82, 335–345, 1996 

[31] Holdsworth J. et al. “Implementing a Gamma Tone Filter Bank,” in SVOS Final 
Report – Part A: The Auditory Filter bank, MRC Applied Psychology Unit, 
Cambridge, England, 1988. 

[32] L. Rabiner, B.H. Juang, “Fundamentals of speech Recognition,” Prentice Hall Signal 
Processing Series, 1993. 

[33] Chadawan Ittichaichareon, Siwat Suksri and Thaweesak Yingthawornsuk, “Speech 
Recognition Using MFCC,” International conference on computer graphics, 
simulation and modeling (ICGSM’2012) july 28-29, 2012 Pattaya (Thailand). 

[34] Ms. Sahidullah, Goutam Saha, “Design, analysis and experimental evaluation of 
block based transformation in MFCC computation for speaker recognition,” Speech 
Communication 54(4): 543-565 (2012) 

 

 



Approved for Public Release; Distribution Unlimited.  
51 

 

List of symbols, abbreviations and acronyms 
 

AFRL  Air Force Research Laboratory 

ASR  Automatic Speech Recognition 

DCT  Discrete Cosine Transform 

DCTC  Discrete Cosine Transform Coefficient 

DCS  Discrete Cosine Series 

DCSC  Discrete Cosine Series Coefficient 

FFT  Fast Fourier Transform 

HMM  Hidden Markov Model 

HTK  Hidden Markov Model Toolkit 

LDC  Linguistic Data Consortium 

MFCC  Mel-Frequency Cepstral Coefficient 

NN  Neural Network 

RASC863  Regional Accented Speech Corpus by National 863 Project 
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